
Our Approach to Cleaning Up Urban Freight

Presentation by:

Justin Laney

General Manager - Fleet

- Largest UK co-owned business
- 83,000 Partners
- 3,600 commercial vehicles
- 290 Transport Operations

THE FLEET

Tractors 600

Trailers 1,000

Rigids 400

Vans 1,600

Cars 1,500

HOW DO WE MANAGE OUR FLEET?

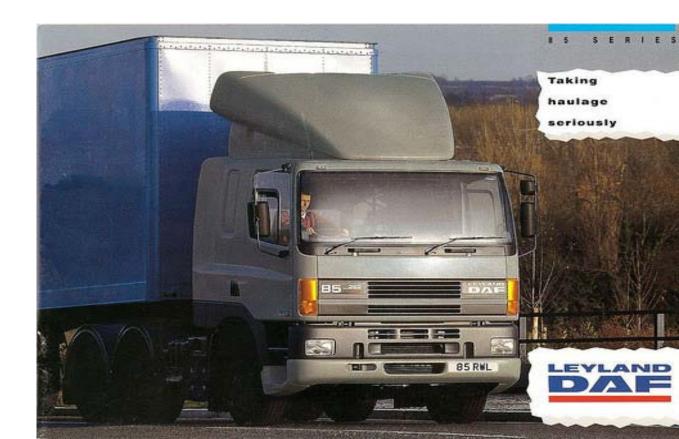
- Long lifecycles
- In-house workshops

- Specified for lowest whole life cost
- Owned

PRINCIPLES

- Identify best practice
- · Work with academics and industry peers
- · Work with policymakers
- Robust trials

PACE OF CHANGE - 1980s


- Safety
 - ABS
 - Asbestos free brakes
- Double deck trailers
- Consolidation

[Directorate Name]

1990s

- Euro standards
- Efficiency
 - 'Mega' volumes
 - Tracking and route scheduling, JIT

2000s

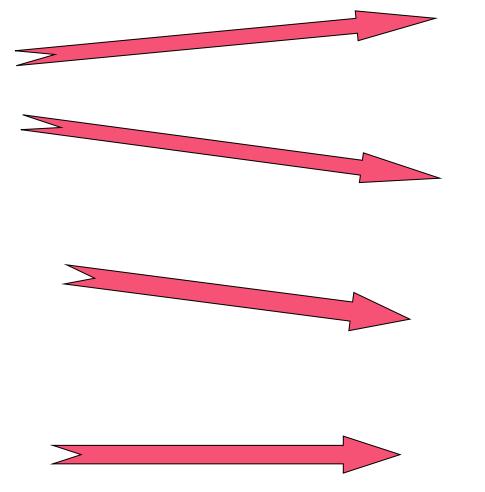
- Carbon reduction, CAZs
- eCommerce
- Telematics, route optimisation, automation

2010s

- Alternative fuels
- Consolidation
- Data and data security, AI
- Short lead times
- Urban access

WHAT NEXT?

- Autonomous vehicles
- Electrification
- Connectivity
- Big data



WHAT ARE WE DOING?

Fewer miles

Reduce fuel burn per vehicle

Alternative fuels

Includes Air Quality and Noise

Scheduling, backhaul, forward haul, load utilisation, consolidation, collaboration

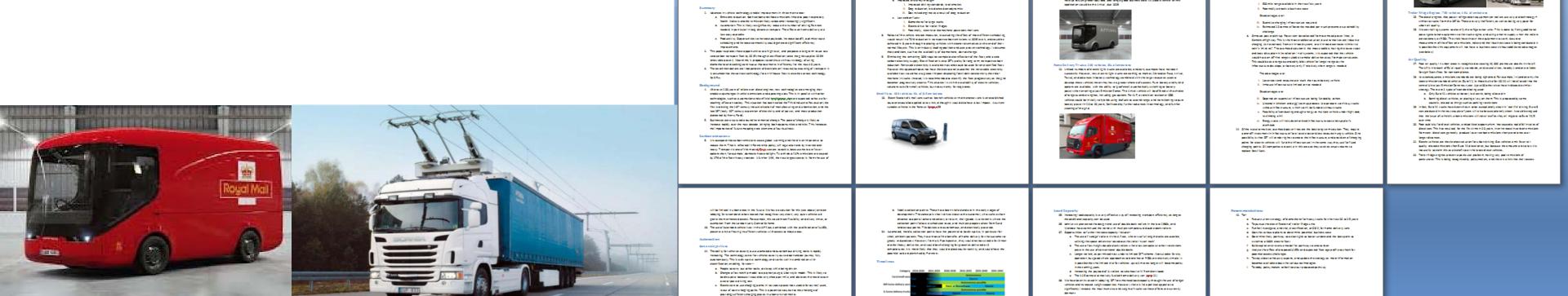
Double deck trailers, high productivity eCom van

Telematics, drag reduction, engine spec, **fridge drive**

Biomethane, electric vehicles

Why diesel?

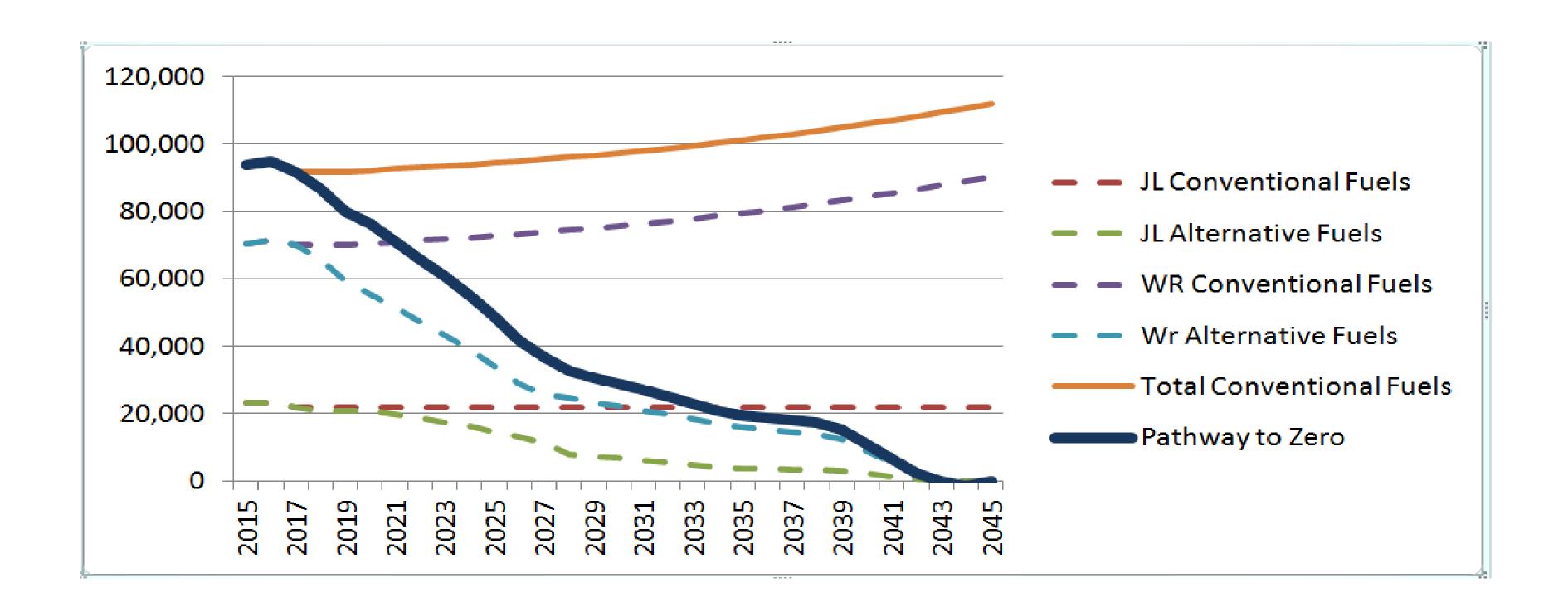
- Its energy dense, cheap, stable, available...
 - One litre will take 1 tonne a hundred miles
 - 1 litre holds the same energy as 40 kg of Li-Ion batteries, costing £2000, or 8,500kCal


Biofuel Sustainability Scorecard

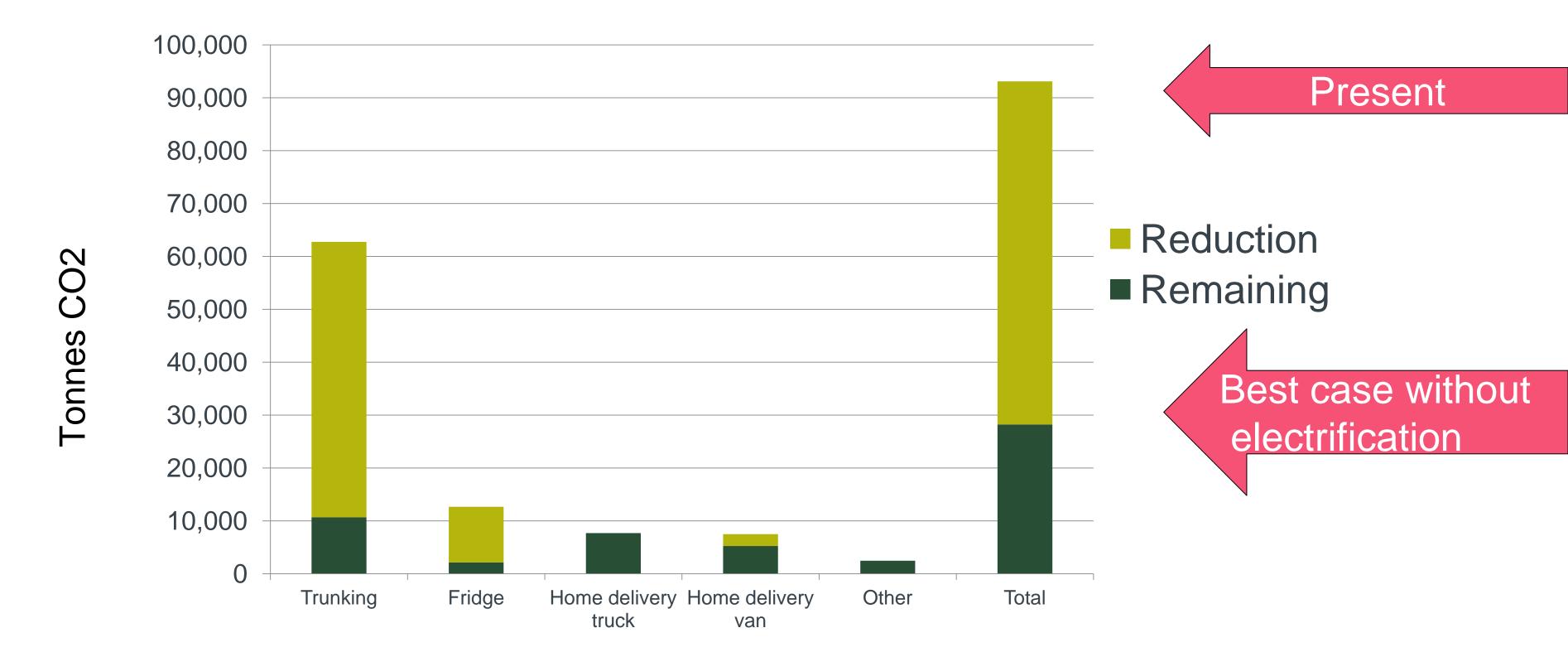
Biofuel		Final	Biofuel		Final	Biofuel		Final
Category	Biofuel Feedstock	Score	Category	Biofuel Feedstock	Score	Category	Biofuel Feedstock	Score
Biomethane	Landfill gas	5	Biodiesel	Soy	23	HVO	Oil seed rape 1 Meal as livestock feed	
				Oilseed rape 1 Meal as livestock				
	Food waste 1	10		feed	21		Oil seed rape 2 Meal as fuel	18
	Food waste 2	6		Oilseed rape 2 Meal as fuel	19		Sunflower 1	19
	Dry Manure	5		Sunflower	16		Palm Oil 1	20
	Wet Manure	5		Oil Palm	20		Palm oil 2	17
	Chicken manure	6		Oil Palm (CH4 capture)	17		UCO from unknown source, unaudited	13
				UCO from unknown source,			UCO from known source in UK or EU,	
	Sewage sludge	7		unaudited	14		audited	7
				UCO from known source in UK or				
	Maize silage	21		EU, audited	7		Tallow	9
	Rye Grass	14		Tallow	9		Tall oil	6
	Switch grass	11		Tall oil	6			
	Hemp	13	Bioethanol	Corn 1 (from outside EU)	24	Biobutanol	Corn	24
	Miscanthus	12		Corn 2 (from UK)	22		Corn 2 (from UK)	23
	Ley plants/ wild flowers	13		Wheat 1 (DDGS as feed)	22		Wheat 1 (DDGS as feed)	23
	Maize + barley double							
	cropped	13		Wheat 2 (DDGS as fuel)	21		Wheat 2 (DDGS as fuel)	22
	Maize + ley crops double							
	cropped	10		Sugar beet	18		Sugar beet	19
	Mixture 1 100% waste							
	mix	8		Sugar beet slops for biogas	14		Sugar beet slops for biogas	17
	Mixture 2 80% waste /							
	20% PGCs	8		Sugar cane 1 (irrigated)	20		Sugar cane 1 (irrigated)	21
	Mixture 3 60% waste /							
	40% PGCs	10		Sugar cane 2 (rain-fed)	14		Sugar cane 2 (rain-fed)	15
	Mixture 4 20% waste 80%							
	PGCs	16						

[Presentation Title] [Directorate Name]

STRATEGY


- All our heavy trucks powered by biomethane by 2028
- Biomethane to play a key role right up to 2045
- Methane and bio-methane to play an important role in freight transport beyond 2045
- Zero carbon John Lewis Partnership fleet by 2045

TIMELINES


Category	2018-2020	2021-2025	2026-2030	2031-2035	2035-2040	2041-2045			
Cars/small vans	Trial	Roll		Electric					
WR home delivery vans	Trial	Roll			Electric				
JL home delivery trucks	Trial	Roll	-out		Electric				
Heavy trucks		Roll-out		Biomethane	methane Electric				
WR fridge trailers	Tr	ial	F	Roll-out	Electric drive from tractor/dock				
Autonomous Drive			Trial	Roll-out	Autono	omous			

EMISSIONS REDUCTION

INITIAL FOCUS

Compressors

250 bar

Dispenser

RTFCs Claimed

Grid Gas

Biogas Cleanup/upgrading plant

Supply from gas

grid

Renewable Transport Fuel Certificates (RTFCs) Issued

Biogas supply from **Anaerobic Digester**

BIOMETHANE

- 83% reduction in WTW CO₂
- 35% reduction in fuel cost (payback at 360,000 km)
- 50% (approx.) reduction in noise
- Good driver reaction
- 60 dedicated gas trucks
- 200 more by end 2020

CLEAN REFRIGERATION

- Typical trailer fridge units engines need to be:
 - More efficient
 - Cleaner (currently cEuro I (1992), Euro II (1996) from 2019
 - Quieter

HEAVY DUTY TRUCKS

- Gas engine, clean fridge
- Low noise
- Enhanced safety

Lobbying for enhanced access to provide business case

Re-timeddeliveries ?

aciiveries :

Exemption from

London control scheme

[Directorate Name]

25

EVs

- Urban specialist vehicles van and light truck
- 4.25 tonne derogation
- Business model will change
- · Currently no suitable vehicle

NEXT STEPS

- Map energy use
- Map charging capacity
- Seek shared charging opportunities
- Engage with OEs and policymakers

CHALLENGES - INFRASTRUCTURE

•Timing

Contingency

CHALLENGES – SAFETY

- Methane
- •250 Bar
- •400V DC
- Cryogenic gas

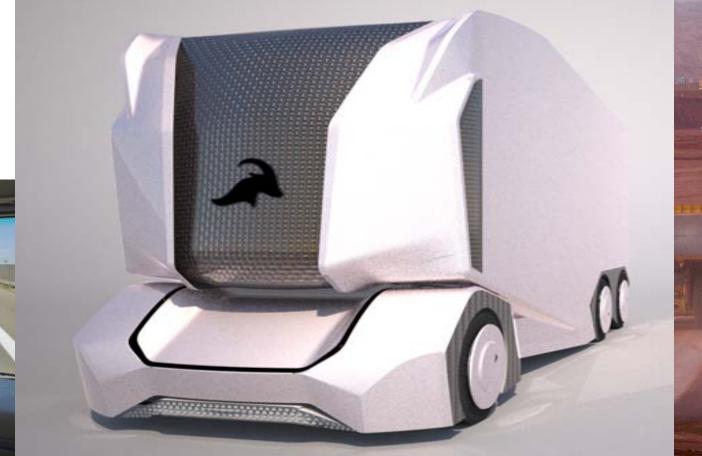
[Presentation Title] [Directorate Name] 29

CHALLENGES - SUSTAINABILITY

- Efficiency
- Venting methane
- Fuel sourcing
- Lifecycle
- Last mile

CHALLENGES – FINANCIAL

- Residual values and obsolescence
- Fuel price
- System cost
- Skills



AUTONO MO US DRIVING

- Suits electrification
- Changes business case
- Changes car ownership model
- Changes car charging needs

WHAT NEXT?

Autonomous vehicles

Catenary

• Urban Access

1913


1900

[Presentation Title] [Directorate Name]

WHATS IT MEAN?

- Disrupt ive competition
 - Logistics
 - Retail
- Regulatory uncertainty

QUESTIONS?